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For a long cylinder floating on the sea surface, incident sea waves with a narrow
frequency band excite body oscillations of short and long periods. Depending on the
stiffness of the mooring system, the body displacement of the long-period motion can
be comparable with, or even greater than that of the short-period oscillations. By
combining the asymptotic methods of multiple scales and inner and outer expansions,
we describe an essentially analytical theory for slow sway of both small and large
amplitudes. Besides showing results for various quasi-steady and transient incident
waves for a rectangular cylinder, we examine the effect of the gap between the keel
of the body and the sea bottom. It is found in particular that a small gap can enhance
moderate resonance by blocking the flow due to long waves and increase the
apparent mass of the cylinder. Real-fluid effects are not included.

1. Introduction

Moored vessels and offshore platforms are often subject to seas with narrow-
banded spectra. Since their mooring systems may have natural frequencies of
horizontal plane motions (sway, surge, yaw) in the order of 0.01 Hz, these vessels can
be excited by long-scale fluid motions associated with the modulational periods of
incident wave groups.

In a regular (unmodulated) wave train, the steady drift force, which is second
order in wave slope, can be computed from the first-order (linearized) solution. In
irregular waves, Newman (1974) has found that the slow drift force can be written
as a quadratic transfer function of the wave components. The coefficients of this
function can be expanded as functions of the difference frequencies. He suggests that
for small frequency differences the coefficients can be approximated by their values
at zero difference — thus the slowly varying drift force is almost as simple as the
steady drift force. In many other papers, the slow motion is found as a part of the
complete and complicated second-order theory, see Pinkster (1976) or Ogilvie (1983)
for a survey. Triantafyllou (1982) has observed that for finite depth the slow
potential is of first order, and used a multiple time expansion to study large-
amplitude (O(1)) slow motion. This technique was also employed by Molin & Bureau
(1980). In these papers, the computational task is considerable. Reasoning that slow
motions are associated with long waves, Agnon & Mei (1985) employed multiple
scales in both time and space to study a rectangular block in beam seas, and
examined second-order slow motions analytically.
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In this paper we extend our earlier analysis to a two-dimensional floating body in
beam seas. In §2 the problem is formulated. Boundary conditions on the body are
given in §3. In §§4-7, small slow sway is described: fast motion is in §4 and slow
motion in §§5 and 6, and examples for a narrow-gap geometry are given in §7.
Sections 8-10 describe large slow sway : fast motion is studied in §8, slow motion in
§9 and examples are given in §10. By combining the methods of multiple scales and
matched asymptotics, analytical results are given for the transient evolution of slow
drift motion and the radiation of long waves. Although the present theory is
explained only for a rectangular cylinder allowed to sway, extensions to arbitrary
cross-section and to three degrees of freedom require only known techniques of
computation for the linearized part and involve no new principle. Results of such
computations are presented.

2. Formulation

Under the usual assumptions of potential theory, the Laplace equation holds for
the velocity potential @(x, z, t)

AP =0 in the fluid, (2.1)

where (z, 2) are Cartesian coordinates, with the positive z-axis pointing vertically
upwards, and ¢ denoting time. Using ¢ for gravitational acceleration, P for pressure
and p for the fluid density, we have the Bernoulli equation:

P
5 =gz + D, + VP2 (2.2)

Assuming zero pressure on the free surface at z = { and small wave steepness, we
expand the free-surface boundary condition for @ around the rest position of the free

surface, and get

¢tt+g¢z = [*%(V¢)2+$¢t ¢zt] _(¢z ¢2)z+0[¢ga (D?] (z = O) (23)

t

At the rigid horizontal bottom, the kinematic boundary condition is:

®,=0, z=—h. (2.4)
Throughout this paper, the water depth is assumed to be comparable with the
wavelength : kh = O(1). 2.5)

There are two small parameters associated with slowly varying small-amplitude
waves. The first is the wave steepness ekd, where k is the central wavenumber and
ed is the free-surface amplitude of the short wave, where k4 = O(1). The second
parameter is the modulation ratio €'Q/w, where ¢'Q2 is the frequency of modulation
of the short wave, or equivalently, its frequency bandwidth, with Q = O(w). For
simplicity, we shall choose ¢ equal to ¢’, so as to render effects of dispersion and
nonlinearity comparable.

In the near field of the body defined by kx = O(1), evanescent modes are as
important as the propagating modes; together they satisfy the boundary condition
on the body. The lengthscale is 1/k in all dircctions but there are two timescales,
1/w and 1/we, the latter because of the slow modulation in the incident waves. It is
well known that in an unobstructed sea, the envelope of propagating waves within
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Fieure 1. The near field of a two-dimensional problem.

a narrow frequency band of O{ew) must be slowly varying in space with the
lengthscale O(1/ek). We define the far field by [|kxf = O(1/¢) where only the
propagating modes of the short waves are expected to be relevant. In the scheme of
multiple-scale expansions, the neat field is described by the independent variables
2, 2, ¢; and the far field by «, z, {, , and ¢, where ‘

(), 4,) = e(x, t). (2.6)

This division into near and far fields enables us to disregard the long wave in the
former and the evanescent modes in the latter; thus the analysis can be simplified.

3. Boundary conditions on the floating body

To continue the description of our approach, it is sufficient to focus on a two-
dimensional problem of a horizontal cylinder in beam seas. At static equilibrium the
axis of the cylinder lies on the y-axis. Waves are incident from {z-> —o0) (figure 1).
For simplicity of presentation, we assume that the body has a rectangular cross-
section and performs sway motion only, to the leading order, at both fast and slow
timescales. Inclusion of all three modes of the fast motion involves no difficulty in
principle and gives no qualitatively new feature in most cases. As will be reasoned
shortly, sway is the most important of all slow modes of a cylinder. The mooring
system is modelled by a linear spring.

The wave field is coupled with the motion of the body through boundary
conditions on the body surface. Denoting the sway displacement by X, the exact
kinematic boundary condition is, before introducing multiple scales,

&, =X, onS8*={x=XH)+B;, —-D<z<{, (3.1)
®,=0 onb={z=-D; —B<z—X<B) (3.2)

S* are the vertical sides of the body, which has breadth 2B and draught D (see figure
1). B and D are assumed to be comparable with the depth A which is of the order of
the wavelength 2n/k. We shall denote the boundaries of the body at rest by

Sy={z=xB; —-D<z<0}, by={z=-D; —B<xr<B}
and the mean position by averaging with respect to the short-wave period by

Sf={x=42B+X,(t); —D<2<0}; by={=-D; —B<x—X,)<B.
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The exact dynamic boundary condition on the body is, before introducing slow
coordinates,

MX,+KX = J

S

Pd;~J P dz, (3.3)
_ o

where M is the mass of the body and K is the elastic constant of the mooring system.
The right-hand side is the hydrodynamic force, where the pressure P is given by (2.2).
As is well known, the driving force for the slow motion (zeroth harmonic) is O(e?).

Let us denote the time average with respect to 2n/w by an overbar. The magnitude
of X depends on the mooring stiffness K. If the mooring is moderately weak so that
K = 0(¢), X must be O(e) (small displacement) in order that the spring force should
balance the hydrodynamic force. The mass of the body is M = O(1)T so that the
inertia of the body for the slow motion is in general

MX,=eMX,,, (3.4)

which is O(¢®) and negligible.

On the other hand, if the mooring is very weak so that K = O(e?). X must be O(1)
in order that the mooring force balances the slow-drift force. The body inertia is then
O(e?) and is no longer negligible.

Some remarks on the magnitudes of other components of the body displacement are
warranted here. For the slow heave Z and roll 8, the dominant terms of the restoring
force and moment are due to buoyancy, the inertia term being O(¢®). For heave the
buoyancy force is

—2BpgZ = O(Z), (3.5)

while the restoring moment for roll is
—gMm_. 6 = 0(0). (3.6)

where the metacentric height m, is assumed to be O(1). Since the forcing for slow
motion is O(e?), we find that the amplitudes of the slow heave and roll, too, are
O(€?), and much smaller than the slow sway. An exception is a floating body with a
bottle neck at the water plane such as a semi-submersible whose water-plane area is
very small. Thus slow sway is usually the most important mode of drift motion.

From now on it is convenient to examine separately the near field, within a few
short waves from the body. and the far field, a few wave groups away from the body
on either side.

We first describe in §§4-7 the case where the drift motion is of small amplitude
kX = O(¢). Modifications for large amplitude kX = O(1) is presented in §§8-10.

4. Slow drift of small displacement: fast motion
4.1. The near field

We first consider a stiff mooring K = ¢K, = O(¢), so that the body sway X, which is
of order O(¢), can be expanded into harmonics as follows:

X:

itds

e” ¥ X, exp(—imwt). 4.1)
1 m=—n

t In physical parameters M = 2pBD by Archimedes’ law.
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Let us distinguish the potential @ in the near field by . At the first order, first
harmonie, the short-wave potential in the near field i, satisfies (2.1), and

Yu,—0¢¥,=0 onz=0, (4.2)

Y, = —iwX,;; onS§, (4.3)

Yu,=0 onby,z=—h, (4.4)

—0*MX,, = ——iwp[j Y dz—f Y dz]. (4.5)
Sy S5

In addition, ¥, must satisfy the radiation condition. Formally, these equations are
identical to the equations for the linear, time-harmonic problem of a rectangular
cylinder swaying freely in regular waves. Many numerical methods can be used to
solve this linear problem of diffraction and radiation. In particular one can determine
the reflection and transmission coefficients R and T' associated with the propagating
modes:

(eik1+R e—ikr)’ —kx > 1,}
= aflt z 4.6
Y = alt) fof ){T - o (4.6)
V2 cosh k(z+ h)

h = 7, 4.7
where fo@ (h+ 071 sinh® kh): .7
with k being the positive real root of

(1)2
o= 7 = k tanh kh. (4.8)

The first-order displacement amplitudes A of the short incident wave is related to the

potential amplitude a by
_ 2iwafy(0)

g9

As an interesting special case to be examined further later, we consider the gap
between the bottom and the body to be narrow:

A (4.9)

h—D = O(eh). (4.10)

In view of this assumption, flow in the gap is roughly uniform, forced by the pressure
gradient :
_OP _ iwpleyry (B, —h)—eyy (=B, — h)]
o 2B

= O(e). (4.11)

When multiplied by the gap width, this flow gives rise to an O(e?) flux. Its effect is
that of a pair of oscillating sink and source of strength O(e?) and is negligible outside
the gap. The potential outside the gap, ¢, is then given to O(¢) by the solution in
Agnon & Mei (1985) for a sliding block, as if the gap did not exist.

4.2. The far field

Away from the body (z; = O(1)) the short waves and long waves have been analysed
by Agnon & Mei (1985). We only recall that, up to O(e?), the far-field potential, which
we denote by ¢, is

b = elpro+ (D1 €7 +4) ]+ €[ Pyo + (Poy €7 + %)+ (P €7 + %)+ O(€%).  (4.12)
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At O(e) the short-wave potential consists of the propagating modes only,

b1 = fo2) [@F (2, 1)) ©*F + Q7 (2, ) e77), (4.13)
where Q=@ (tl—%), and @ = @~ <t1+%), (4.14)

g
in order for @,, to be solvable (see e.g. Mei 1983 p. 52). In order to match with the
near field we require that

Q" =alt,—x,/C,); @ = Ra(t,+x,/C,) (x, <0), ils
Q+—Ta —1,/C,); @ =0 (, > 0). (+-19)

5. Slow drift of small displacement: slow motion in the far field

The long waves are associated with the zeroth harmonic of the potential ¢,,, and
of the surface elevation. Owing to the stretched coordinates, this first-order slow
potential gives rise to second-order free-surface displacement

10

1
‘—556 10 — —; 62¢10t1 = €2§20. (51)

In the far field, x; = O(1)7, the governing equation for ¢,, has been derived by Agnon
& Mei (1985). From their (4.7) we can infer that

¢10t1t, _gh¢1o.v,z, = f3(0) [o* —k*— 20k/C ] [1Q°+ IQ+l2]t1' (5.2)

In view of (4.15), (5.2) becomes

Protyt, ~9hProe, x, a%{la(tl——xl JC)R+IRa(t, +2,/C ), =, <0,
= —f3(0) [(k* = 0*) Cy + 20k] al (5.3)
—t;|Ta(t1—x1/03)|2, x, > 0.

The right-hand side of (5.3) forces group-locked long waves which propagate at
velocities C; and —C,; these are the inhomogeneous solutions to (5.3) without regard
to boundary condltlons In addition, there are also free waves which propagate away
from the origin at velocities (gh)t and — (gh)%, and are solutions to the corresponding
homogeneous equation. Formally, the entire solution can be written as

f¢10 —2,/Cy) + PTo(ty +x,/C) +¢1“0(t1+xl/(gh)%) (2, < 0)’1
° T\ Bh = /C ) + Bty —, /(gh)) (@, > 0),

which must later be matched to the near field. The potentials of group-locked waves

@ (a =1, R, or T) can be straight forwardly obtained from (5.3) and written as

(5.4)

Tot la(t, — 2,/ C,)?
! (U 2wk 1
Pioe, =g———hj/cg§)~1 [(k2—02)+———0 ] |R|? Iat (b, +2,/Cy)I? |- (5.5)

tfozl d IT?a(t, —xl/Cg)lz
The free waves ¢, are yet to be determined.

T Unless otherwise specified, all spatial coordinates are normalized by &' and time by ™, when
orders of magnitudes are mentioned.
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For later matching with the near field, we shall need the inner expansion of (5.4)
as |a,| - 0;

I R -
P10~ [¢{0+¢ﬁ)+¢fo]11=0+xl[—0—m+6&+—¢l—%J (x, <0),
g e (gl (5.6)
T + ’
P10~ [¢’fo+¢ro]zl=o+x1 [—C_l:_(%j}lb%%]tl (2, > 0),

where we have replaced z, derivatives by t, derivatives.
We now consider the slow motion in the near field and carry out the procedures of
matching for small- and large-amplitude slow motions separately.

6. Slow drift of small-displacement: slow motion in the near field and
matching with the far field
6.1. Large gap H =h—D = O(h)

A geometry most common in practice is one in which the gap between the body and
the bottom is not small compared with the water depth.
In the near field the long-period potential is

U = efrio(®, 2, 8+ €20(2, 2, £)) + O(e?), (6.1)

up to O(e?). While only yr,, is of importance through ¢,,, to the dynamic pressure at
O(€?), and hence to the drift force on the body, ¥,, is important to the kinematic
condition on the body. Both i,y and ¥, satisfy

¢1011+¢j022 = 07 (62)
l/}joz =0, z=—D, |2 <B,
z=—h, |r|]<o0, (6.3)
with j = 1, 2. On the free surface = =0, |x| > B, we have
V10 = 0, (6.4)
1. oU
Voo = “5(1“)1/’11 Yhet*), = h‘é‘;- (6.5)

It can be shown that the velocity U, defined by the parenthesis on the right,
approaches the Stokes’ drift U(+ oo, ¢,) at infinity, and its x-derivative vanishes.
Expanding the kinematic boundary condition (3.1) about the mean position S¢,

we get
) X, = 1,(5%) = Yo55) + Xy, (S5) + O(6°). (6.6)
At the first order O(e) we get the zeroth harmonic:

Yoz =0 onSF, (6.7)
while at the second order, the zeroth harmonic is
Vaor = Xlot, — (X Y +*) onS§. (6.8)

In view of (6.2)—(6.5), ¢, is a function only of ¢, :
Y10 = Yao(ty)- (6.9)
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Physically this result is expected on the ground of mass conservation, since the flux
through the gap, which is O(Heyr ), must be matched to the flux in the far field,
le.
lim Hielﬁw = lim Ae%p,,, = O(?). (6.10)
kx> 1 X lkz, <1| !
This in turn implies that the spatial variation of the slow potential in the near field
with respect to the short scale is in general second order in ¢. At the first order there
is only a slow and uniform rise of pressure but no flow.

To find the second-order dynamic boundary condition from (3.3), we divide
S* into two intervals (—#%,0) and (0, ¢,,). Taking account of the following
approximations:

d?

de
‘ﬁz(si) = ¢L(Soi)+¢th+0(53)a

eX,y = €3X10tlt1 = 0(¢%),

fglh dz = &z = 0)+ 0(€?),

the second-order, zeroth harmonic of (3.3) is found to be

K1X10:_plif Péodz_J Py dz+d(iwyr,, T1+*)+%6(9§T1§11+*)]7 (6.11)
Sy Sy

where K = ¢K .
Py = ¢10L1+|V¢11|2+ (oY, Xy +x)+gz (6.12)
from the Bernoulli equation (2.2), and
oG = G(—B,0)—-G(B, 0) (6.13)
denotes the jump from one side of the body to the other.

With (6.12) incorporated, the right-hand side of (6.11) can be split into
contributions by ¥, and ;. Since ¥, and {,, are formally the same as their
counterparts for a sinusoidal wave train, the terms involving them must give the
usual steady drift forece which has been obtained before by Maruo (1960), Newman
(1967) and Longuct-Higgins (1977) (see Agnon 1986 for detailed verification). We
only give the result here:

C
pglAf® IRlzﬁ, (6.14)

where ¢ = w/k and A is the amplitude of the free-surface displacement. Equation
(6.11) can now be written as

C
K1X10 = '—p[J' ¢10dz_f ¢10 dz] +pg|A2|R|2?§, (6.15)
Sy Sy t

In view of (6.9), the two integrals above cancel, and the dynamic boundary condition
reduces to

C .
KXo = pglAP [R5 (6.16)

Thus our arguments via the multiple-scale expansions reaffirm Newman’s result that
the slow drift force is approximated by the steady drift-force formula, for a large gap.



Slow: drift of a floating cylinder in narrow-banded beam seas 149

We point out that, in the present case, body inertia and radiation damping are
negligible at O(e?). However, both of these are often included in existing literature in
an ad hoc manner.

The present theory allows us, in addition, to find the long-wave field, which has not
been dealt with in the literature. To determine the wave potentials ¢/, and ¢7, we
match the slow potential and its gradient on both sides of the near field with the
corresponding quantities in the far field, yielding the simple result:

¢10(O,, L) = lﬁlo(ﬁ) = ¢10(O+~ £). (6.17)

Thus to the far-field observer, the near field shrinks to a line at x; = 0 across which
the potential ¢, is continuous via r,,. Combination of (5.4) and (6.17) gives one

condition :
;-O(tl)_¢1_0(f1) = ¢{0(f1)+¢§)(f’1)_ 'f()(fl)’ x; =0. (6.18)

In order to determine the unknown ¢;, and ¢,, we need a further condition on
0¢7,/0z, and d¢7,/dz,. This condition is related to the O(e?) mean horizontal flux.
Viewed in the near field, the second-order mean horizontal flux across a station S,
where kx> 1 and x, €1, is

¢ 9 Qi L
fd%f 41 IR LT T (6.19)
—h ox st ox |,_ —_n x St
= 7
This should be matched to the far-field mean flux:

T e gt

J TR A7) B N 11 I (6.20)
IR ] s I ox x;oo*

The overbar stands for averaging over a short-wave period 2n/w and a short
wavelength 2n/k. Because {;, and ¢,, are continuous when passing from the near to
the far field. matching of flux implies

(6.21)

+
T,=04 S

Extending the arguments in Agnon & Mei (1985) it is further shown in Appendix A
that energy conservation of the first-order waves. [R|*+|T|* = 1, requires also that

a0 &y
=U(w,t,) =12
ar [g+ ( ) ar

=U(—om. 1), (6.22)

S

where U(+ o0, t,) is just the flux associated with the Stokes’ drift. 1t then follows
that

= U(+o0.t,). (6.23)

Invoking again energy conservation of short waves we observe from (5.5) that
Tt ol =91, atr =0 (6.24)

Matching the gradients of ¢, as they appear in (5.6), and using (6.23) and (6.24), we
eliminate the locked waves to get

Pr0(0_. ) = —1p(0,. 4,). (6.25)
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Using (6.24) and (6.25) we write the right-hand side of (6.18) in terms of ¢1, and the
left-hand side in terms of ¢3,. The result is simply

1004 13) = ap(0_. 1y). (6.26)

Thus the free long wave @i is completely determined. Its potential amplitude is
equal to the long wave locked to the reflected wave group but the speed is different.
Substituting (6.25) and (6.26) into (6.17) and (6.18) we determine the near field to

leading order: .
lﬁlo(tl) = ¢10(0¢» t1) = ¢10(0i’ tl)' (6027)

Thus ¢,, at x, =0 is the same as if the body were absent! This is similar to the
Froude-Krylov approximation in the linearized theory of long waves past a small
body.

To recapitulate, we first calculate B and 7' by existing methods in the linearized
theory of water-wave diffraction. The steady drift displacement is then given by
(6.16), the locked long waves by (5.5) and the free long waves by (6.25) and (6.26).
Thus our earlier theory for a sliding block is extended. Since the qualitative features
of the results for the long waves are very similar to those for a sliding block already
discussed in Agnon & Mei (1985), no numerical results for the former are presented
here.

6.2. Narrowgap H=h—D <h

When a ship is moored in very shallow water, the gap between the body and the
seabed can be narrow; the analysis of §6.1 does not apply. Consider specifically

H=h—D = 0O(eh). (6.28)

We first show for a vessel with a beam B/h = O(1) that the fast heave and roll
amplitudes Z and ¢ are hydrodynamically restricted to O(e?) and can be neglected.
Let us denote the fast heave and roll potentials in the gap by ¥ and ¢y, and the
related added mass and added moment of inertia by g, and I, respectively. For

brevity the subseripts ( ),; are omitted here. The equations of mass conservation in
the gap for each case are

—HyZ+(—iw)Z = 0. (6.29)
—Hy? + (—iw)Ox = 0. (6.30)
Hence. by integration. p
Y = —iu)]—_;%xg, (6.31)
VAREES —ia)gl;r3 (6.32)
HG - S P4

The added mass for heave and the moment of inertia for roll are then

e (? (2) B 3.1
/‘z——afzJ;B'/" e =pag = OB, (03
B 5
p B -
. =— (&) — = 5¢71), .
0 aﬂ()j_ﬂl’&‘ rdr=pigg = OwRe) (634

Since w = O(1), and the wave pressure is O(e), the fast heave and roll displacements
are O(e/e™') = O(e*). and too small to be interesting.

Because of the narrow gap under the body, the scale of z is no longer k. Previous
conclusions on ¥, no longer hold since strong blockage occurs. The slow current
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under the body becomes large (O(e)) and there is a large pressure gradient or
difference between the two sides of the body. Apart from this difference, the flow in
the gap has only an O(e?)-effect on mass flux, which does not play a significant role
in ¥, outside the gap on either side of the body.

We now introduce ey}, and e*y, so that

eYio+ e, = €03y (6.35)
with r;, satisfying (6.5), and
Voor = — (X ¥+ +U(+ o, t) onSy (6.36)
on the sidewalls. In view of the vanishing of 0U/0x at ¥ — c0 we must have
Yo —0. |x|—oc0. (6.37)
It follows from (6.6), or (6.7) and (6.8), that
Vior = Xyor,—U(L 00, 1;) onSy. (6.38)

Otherwise i, satisfies the same conditions as ¥ ,. and ¥y, as ¥,,. i.e. (6.2)(6.4).
Yo now contains both first- and second-order effects. Clearly e*y, corresponds to a
radiation problem which will give rise to O(¢®) long-period pressure only.

Note that ej, corresponds to the flow in a channel with a rigid top and bottom,
induced by a block moving longitudinally at the velocity €*(X,, —U). This is a
typical problem in the linearized theory of long-wave scattering by a body. Since the
long wave gives rise to an ambient current e*», the velocity of the current relative to
the body is €*(v— X, —U). It is known (Flagg & Newman 1971) for a fixed body in
long waves that the outer approximation of the near-field potential is given by

eQ(t) +eX(v—X o +U)xte(v—X5 +U)e, 2100, (6.39)

where ¢ is the blockage coefficient defined here to have the dimension of length. The
quantities @ and 1" must be determined by matching with the far field. Since the
body is moving in the stationary frame of reference. we superimpose a countercurrent
€*(X g, — ) and get
Yo ~ eQ(t) +etrrtet(v—X,, +U)e, x—> to0. (6.40)
For a narrow gap the blockage coefficient ¢ is known to be a large quantity,
Bh

F+O (loge) = O(e™) (6.41)

(Flagg & Newman 1971). Hence the variation of ¥, across the body is O(1). This
implies that the slow potential must contribute a net force on the body according to
(6.15), unlike the usual cases of H/h = O(1).

We now match the outer expansion of the near field, (6.40). to the inner cxpansion
of the far field, (5.6), giving

Q(H)‘*’[l’_th Ulec = [¢], +¢f0]1]—0 1
Q) —[v—X 10t, +U]6C = (¢l + b +¢10]11 =0

” — QQ ¢10] 9
v —[ (, +C' +(gh)% tl. (6.42)

T +
v [_ﬁ__lll] ,
Cy  (gh) t,
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Integrating the last two equations above with respect to ¢, we get

0= "% =0 (6.43)
Using U7(+ c0. t;) = U(—o0. t;) and eliminating @, we find the potential jump across

the body.
[¢10]1,=0+ - [¢1o]z,=0, = ¢110 +¢10— (¢{0 + 10+ $10)

T +

where ¢, = ec = ((1). This is also the slow—potential difference [¢ols- —[¥10ls
between the two outer limits of the near fields, i.e. between S? and S . Bécause the
gap is small, the slow potential is different from 37, at S% only in the O(e)
neighbourhood of the gap entrance beneath S§. Hence to leading order (6.44) gives
the net long-period pressure on the body. Equation (6.15) becomes

. v , _ C .
K, X, = phldiy+dT—( {0+¢¥0+¢10)]tl+l)g|A|2|R|26gs r = 0. (6.45)

Because the gap is narrow. the reflection coefficient R is the same as that for a sliding
block (cf. end of §4.1) computed in Agnon & Mei (1985).
We shall now climinate ¢, between (6.43) and (6.44). From (6.24), (6.43) and

(6.45) we get
L 2gE Klfﬁlo_{_o R |~12|R|2& (6.46)
iot, ol 10t, 7 4 o ‘

Differentiating (6.44) with respect to ¢; we can substitute its left-hand side into the
right-hand side of (6.45). Using (6.46) for Proe,- We get tinally

K K
X +—t X X
104t 20h(gh); 106,79 S pe 10

_ C , (v g a g 2

where S= %—% (6.48)
is the well-known factor appearing in the radiation stress. Details are given in Agnon
(1986). Equation (6.47) is similar to that for a damped oscillator (note that the
blockage coefficient ¢ plays the role of an effective mass). Once it is solved for certain
initial conditions, we get from (6.46) ¢4 (+0. t,), which then gives ¢ (¢, F (gh)ia,).
Through the Bernoulli equation, the free-surface elevation associated w1th the free
long waves is readily obtained from

1
& = g ot,- (6.49)

In the limit as H — 0, there is no gap and the blockage coefficient ¢; — co; the last
term on each side of (6.47) vanishes and the resulting equation may be integrated
with respect to ¢,, yielding

|R|2) Ce I 8142, (6.50)

K ,
Xy +——1 X =—( o3
W 2ph(ghy " \(gh) Zcian
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which is identical to the equation for a sliding block (Agnon & Mei 1985). On the
other hand. as the gap becomes large. H = O(1), ¢, = O(¢) and the last term on each
side of (6.47) becomes the dominant term, and (6.16) is recovered. Therefore, (6.47)
may be regarded as practically valid for all gap widths although it is established for
a narrow gap only!

Note from (6.47) that the normalized response is independent of the valuce of e.

7. Slow drift of small displacement: Examples for special incident
envelopes for the narrow-gap case

We shall now give explicit solutions to (6.47) for the following wave envelopes: (a)
a steady sinusoidal envelope; (b) the sudden start of a sinusoidal envelope: (¢} the
gradual start of a sinusoidal wave: and (d) a wave packet.

(a) A quasi-steady sinusoidal envelope
Let the incident wave have the scaled amplitude

A=A,sinfAN, atx, =0 forallf, (7.1)
so that the actual amplitude is e4,. The solution to (6.47) is simply
X,, =Re[X, e 89+ X7 ]. (7.2)
The amplitude of the oscillatory component is
: -1
o]

! ! o
with D= {QiQ (%|R|2+1 |R|2) Ce 9 S+-£ —g—|R|2}A§. (7.4)
gh)
The steady-state component is

v _1gpC

X, = 3K, (§A2|RI2 (7.5)
(b) Sudden start of a sinusoidal envelope

Let A=H(t) A, sinQt,, (7.6)

where H is the Heaviside step function. The solution of the homogeneous part of

(6.47) are

X, oCenly el (7.7)
a —K K K T
ith 1 1 4+ 1 _ 1 ) )
it [aj 4ph(gh)f[16p2h29h 2pr1] (7:8)

It is assumed that the square root above does not vanish so that a, + a,. Otherwise
the solutions are e®“s and f, e»/:; the results are not qualitatively more interesting.
With the initial conditions X,(0) = X, (0) = 0 we get the transient sway:
o, et — g e“ztl
R P R
Gy =3

. +2i0) exli — 2i10) e=t
+X/10[e—219t1 (xy+212) e (a,1+2i2) e ]}’ (7.9)

Xy 0y
where X}, and X7, are defined in (7.3) and (7.5).
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1.00

0.25

1 L A N 1 J
0 0.25 0.50 0.75 1.00 1.25 1.50
Q/w

Ficure 2. Normalized amplitudes of the slow-sway displacement X, = RIX |/ A2 for Case (a), a
sinusoidal envelope; K, = K/epgh = K, /pgh = 0.5, 1 and 2; kh = 1.0; ¢,/kh = 1 (narrow gap).

(¢) Gradual start of a uniform wave train

Let the envelope begin from zero at ¢, = 0, grow sinusoidally to ©/2Q, and then be
kept uniform:

A= AO[H(tl)H(%—tl) sin Qtl—i-H(tl—%)] . (7.10)

Then X, is given by (7.9) for 0 < ¢, < =/2Q2, and

X, =Re {2)(;’,,[1—“2 ©

ay (b, —n/202) _ 0‘1 eaz(tl—xlzﬂ)]

Ay Xy
T N T eal(tl—n/z@)
vl () T
; n P e (t;—m/2Q) n
el et v o

As t,1 00, X, tends to 2X7,, which is the steady drift displacement, and is also the
value given by (6.16).

(d) A wave packet
Let the envelope have a finite duration from ¢, =0 to t, = n/Q:

A =H(t1)H<g—~t1)A0 sin 2t,, (7.12)
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(b

WAVAVAVI

C N\
(d)

FioURE 3. Transient slow displacement for a block with a narrow gap. Case (b), a sinusoidal
envelope starting from rest; Case (¢), uniform envelope starting from rest ; Case (d). a pulse envelope.
c/h=1kh=1;Q2/w=04; K, /pgh=K/epgh=1.

.Qtl/ﬂ:

then X,, is given by (7.9) for 0 <, < ®/L2, and

- i NP
Xro = Re {[OLZXIO (5) -4 100 (5)] Oy =0y

: n } 1\ et/ n
{“l““’(ﬁ)‘lwh(ﬁﬂﬁ}‘ gSh 1)
2 1

We now present numerical results in dimensionless parameters denoted by tildes.
In all the computations presented in this section we chose kh = 1, M = M /ph® = 1
and & = ¢,/h = 1. The normalized mooring constant is K, = K,/pgh = K/(epgh).

In figure 2, the normalized slow-sway amplitude

5, thio €h|Y10|
“‘10 T AZ AO ’

where a circumflex denotes physical quantities unscaled by ¢, is plotted versus
O =Q/w=8/cw, the wave modulatlon ratio, for three values of K,. The resonance
peak occurs near 2Q/w = (K,/2phc,):. Thus the narrower the gap, the greater the
blockage and the sharper the resonance.

To help gain some idea of the physical magnitude involved, we may take the
following sample values: depth A= 10 m, vessel width 2B = 10 m, wavelength
A=63m (or k£ =0.1/m) which corresponds to a wave period of 7.2 s. Correspond-
ing to the dimensionless parameters of ¢, and K, chosen, the gap width is 5¢ (thus
H=05mifeis0.1), and the spring constant is 104 N/m if K, = 1. Each unit of the
abscissa (£2/w) corresponds to a 72 s period of the modulatlon envelope. If the
incident wave amplitude is 3 m each unit of the ordinate X, stands for a slow-sway
amplitude of ~ 1 m.

In figure 3, the slow-drift displacement X, caused by transient wave envelopes is
shown according to (7.3), (7.11), and (7.13) versus the non-dimensional slow time,
Qt,. For all inputs, the modulational frequency £2 is chosen to be near the resonant
peak with Q/w =04 (cf. figure 2). For Case (b) the oscillatory part of the drift
motion is larger than the mean. For Case (c) there can be some initial overshoot, after
which the final steady state is quickly reached. For a pulse envelope the negative
overshoot is followed by quick attenuation.

6 FLM 190
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8. Slow sway of large amplitude: fast motion in the near and far fields

In many practical situations, where the mooring is very weak the slow-sway
displacement can be much larger than the wave amplitude. It is no longer feasible to
carry out the Taylor expansion about the rest position of the body : modifications are
required.

Specifically, we assume

K =K, = 0(e?) (8.1)
and H = O(h) and the total displacement can be large:
X = 0(1). (8.2)
Instead of (4.1) we let '
X=3e 3 X, e (8.3)

n=0 m=—n
where the series begins at n = 0 and X = X, is the slow-sway displacement of order
unity, i.e. comparable with A or k™'. The corresponding drift velocity is first
order,

0X,

o
We define a moving coordinate system that follows the slow motion X, in order to
study the fast potential r,,. Let

=Xy, = 0fe). (8.4)

(@, 2, )= (x—X, 2, 1) (8.5)
be the moving coordinates in terms of which the velocity potential is
D', 2, 1) = D, 2, t). (8.6)
The spatial gradient does not change under the transformation (4.12) so that
VY =VP, (8.7)
but the time derivative changes in accordance with
@, = ,—cX, P, (8.8)
Let us denote the near-field potential by
&=y ¥Z=001) (8.9)

and expand it into orders and harmonics as in (2.7)

Y= 26" T e (8.10)
n=1 m=-n
The first-order fast potential i, satisfies formally (4.2)—(4.5) when all the unprimed
variables are replaced by the primed variables, Therefore, the solution in the primed
coordinates follows trivially from that in the unprimed coordinates, and can be
regarded as known.

9. Slow sway of large amplitude: slow motion in the near and far fields
From (8.8), the slow-drift velocity affects the short-period pressure at O(e?) but

the long-period pressure at O(e®). It follows that the drift force on a body is still given

by the conventional theory with the amplitude varying slowly in time. If desired, the
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correction can in principle be computed in a manner similar to the theory of a ship
cruising in waves (see e.g. Grue & Palm 1985 and Huijsmans & Hermans 1985).
Nevertheless, the leading-order correction to the drift force must be proportional to
the small ‘current speed’. Without calculating the details we shall formally express
the ‘current effect’ on the drift force by

pgX Al X, = O(E) X, (9.1)

with A" = O(1).
To the first order O(e). the slow kinematic boundary condition on the body can be
approximated from (6.6)

Vi, =Xq, onS§, x=1B+Xit), -D<z<0. (9.2)

The dynamic boundary condition on the body is obtained in the same way as (6.15)
for the small-amplitude slow sway, except that the body inertia, which is now of
order €?, must now be added. A consistent assumption for the mooring force is
K =¢%K,, i.e. very weak. We now have

, S C
M‘Xotltl"'l‘z‘xo = —P[J V1o dz—f V1o dz] +pg |A|2|R|2Eg- (9.3)
S” st

2

The slow potential i, can be separated into two parts: the first part il is a
function of ¢, only and is the near field of the slow potential given by (6.24)-(6.27).
Its corresponding far field ¢{}) consists of the locked long waves which travel with the
short-wave groups (I, R and T) and of the free wave ¢#. In particular, y{f

satisfies
P =0 onS¢. (9.4)

Because of this homogeneous condition, ¥{} may be called the diffracted free
wave, The remaining part of the slow potential, (), is related to the radiated wave,
satisfying (9.2), the inhomogeneous condition and the radiation conditions that the
long waves are outgoing from the body. ¥ is simply the solution to the linear
problem for wave radiation by the slow-sway motion. The determination of {3 and
the corresponding ¢,, is an exercise in matched asymptotics similar to Beck & Tuck
(1972). For convenience, the essential results are cited in Appendix B. In particular
we find the far fields to be

¢ = £e Re{Xoaexp[—2Q(tFr /(@] 2 20, (9.5)
21Q¢
where a = —eilel, (9.6)

and c is the same blockage coefficient as in (6.41), and k, = 2Q/(gh): = )i = O(1) is the
normalized long wavenumber. It may be pointed out that matching ensures the
continuity of pressure and mass flux.

The associate drift force due to ¥ is

27 _ _ 2 2 _ @ Jas
eFR =—¢ p[J §O)t1 dz J . %ml d“]
s~ s

= e%p Re [~ 212X, e 2% (2ha— 2122BD)]. 9.7
The result has been derived by Beck & Tuck (1972, equation 5.8) who studied a

46-2
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slender body in shallow water. We can define the added-mass and damping
coefficients 4 and A by

—FR = (—4Q% —2iQ)) X, e ¥

2ch .
— 2y —210¢,
=40 ‘Xo[eiklc—1+2BD] e , (9.8)
. ch 4Qpek, he?
€. = BD+———— = T .
b€ # p[ 1T ek, c)] A= T3 ek o ©.9)
We may now rewrite (9.3) as
C
(M + )Xoy +AX, + K, X, = pg|A|2(|R|2ﬁ+€A'4Y0tl). (9.10)

Note from (9.10) that for a wide gap ¢/h = O(1) or H/h = O(1) and ¢k = O(BD); the
apparent mass g is of the same order as the actual body mass but the radiation
damping force associated with A is much smaller than the rest by the factor O(¢). This
suggests the possibility of large resonance if |[4|* has the modulational frequency close
to [K,/(M + ). However. near resonance, where the body inertia and the elastic
mooring force nearly cancel each other, real-fluid effects so far ignored are important
and serve to make the resonance finite. To the leading order (9.10) is surprisingly
simple in that one only needs the apparent mass u of the body for the long-period
oscillations, the drift force being given by the standard formula as stipulated by
Newman (1974). To account for this weak radiation damping consistently with the
inviscid theory, it is necessary to go to O(e?) and further to include the effect of the
A’ term. This is not very rewarding in view of the more important effects of viscosity
and flow separation. There is however a special circumstance where radiation
damping can be more important than the A’ term. Referring to (6.41), the blockage
coefficient depends on the ratio B/H, which can be large. Consider ¢/h = O(1/¢?) 62 ), then
p = O(1/€}) and A = é&. Let the damping be moderately weak so that K = (e e K 1) or
K,= Ixa/ez Then the balance of response to forcing in (9.10) implies that X = 0(62)
In this case the radiation damping term is still small: AX,, = O(e). However the
drift force induced by the A” term should reduce with X, and be O(e), and is still
relatively unimportant.

10. Examples for special incident envelopes for large slow sway

For the cases studied in §7 the analytical results in §7 can be carried over directly
to the present case, with X, replaced by X,. The only modifications are that X/,
defined by (7.3) must be replaced by

1C
X, = -3 zfpglRle2 (M +p)42* —2iQA+ K, |1, (10.1)
and «, , of (7.8) are now given by
— AL — 4K +p)f
2(M +p)

In general a long floating cylinder has three degrees of freedom, and it is routine
to solve numerically the linearized diffraction and radiation problem for ¥, allowing
all three modes of motion. We have therefore calculated the reflection and

oy, = (10.2)
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10
K,=0.5

Q/w

Freurs 4. Amplitudes of the normalized slow sway X, =hX,/AZ versus the modulation ratio
Qjow, for K, = K,/pgh = K/e*pgh = 0.5, 1 and 2; ¢/h=1; kh=1.6; ¢ =0.1.

1.5 )

I
’ /\\//\

iR ADRE

1L

Ficurg 5. Transient slow sway of large amplitude for a floating rectangular cylinder. Case (b), a
sinusoidal envelope starting from rest; Case (¢), a uniform envelope starting from rest; Case (d), a
pulse envelope X, =hX /A}. The parameters are £/w = 0.33; K,=K,/pgh=1; c/h=1;
kh=16;¢=0.1.

(c)

—

transmission coefficients R and T by allowing all three modes, which are
unconstrained by the weak mooring force. Specifically we have carried our calcu-
lations for kh = 1.6 and a square cylinder with sides 2B and draught D = B, in water
of depth A = 2B. The density of the cylinder is homogeneous and is equal to half the
water density. After finding the metacentre (at 2 = 1B) and the moments of inertia,
we have computed the reflection coefficient to be |R? = 0.7447, which includes the
effects of diffraction and radiation. The added mass in long waves can be found to
be u = 1.5 ph? (Flagg & Newman, 1971). Sedov’s formula (Beck & Tuck, 1972)
1 = 2p(he— BD) then implies a blockage coefficient ¢/h = 1. The slow sway of large
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amplitude is affected by the three first-order modes only indirectly through R and 7',
the slow heave and roll being O(e) smaller by comparison, as pointed out near the end
of §3.

In figure 4 the value of the normalized slow-sway amplitude for a periodic
envelope, X, = hX /A2 = 2hX /A2 is plotted versus the modulation ratio 2/w for
various choices of the parameters. A" is omitted in these calculations. It is clear from
(9.9) and (9.10) that increasing ¢ as well as increasing K, will reduce X,. Because of
the weak radiation damping the resonant peaks are sharp. The very high peak for
K, = 0.5is of qualitative value only, as flow separation and other higher order effects
must be important. In figure 5 transient responses corresponding to the transient
inputs of Cases (b—d) of §7 are plotted. The long timescale of the transient part is
chosen so that the corresponding frequency is not too far from the resonant peak
shown in figure 4 for K, = 1. Again, due to weak radiation damping, there is a long
period of reverberation at the natural frequency, after the transient part of the input
has gone.

To see these results in physical scales we take a sample cylinder in water of
h =10 m depth. For ¢ = 0.1, the corresponding unit slow sway in the graph is
approximately 10 m if the incident wave amplitude is 3 m.

11. Conclusions

By a multiple-scale analysis we have been able to separate the low-frequency part
of the second-order fluid motion from the high-frequency part. With further use of
matched asymptotics, we have shown for a rectangular cylinder that (i) the transient
slow-drift problem can be solved analytically without solving explicitly for any
second-order potential, and (ii) the slow motion in the near field is accompanied by
the propagation of long waves in the far field.

We have also examined the effect of the blockage coefficient, which is a measure
of the obstruction by the body to long waves. and the effect of mooring stiffness.
Specifically when the mooring is not too weak, the slow sway is comparable in
magnitude with fast sway. If, furthermore, the blockage is not large, then the drift
response is passive as predicted by Newman (1974). The local slow potential is hardly
affected by the presence of the relatively small body. However, if the blockage
coefficient is large, added-mass and damping coefficients of the slow motion become
significant. The differential equation of slow motion becomes second order and
moderate resonance may occur. The slowly varying potential, ignored by most
previous authors, is shown to play an important role here. The response to a transient
input may exhibit considerable overshooting which should be relevant to a long
vessel in a shallow harbour.

We have also extended the analysis of Triantafyllou (1982) for the case of very
weak mooring and clarified the conditions under which the slow sway can become
O(1). Within the realm of the potential theory, damping due to the radiation of long
waves and the change of drift forces due to the ‘forward speed’ effect of the slow
sway on the short waves are both small, and strong resonance can occur. Damping
due to real-fluid effects is of course important but much too difficult to be predicted
theoretically.

We are grateful for the financial support by the Office of US Naval Research
(Contracts N00014 80-C0531 and 86-K-0121) and the US National Science Founda-
tion (Grant MEA 8210649).
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Appendix A. Integrals concerning 0yr,,/0x at S, and S,

We recall that i, satisfies (6.2)—(6.5) and (6.8), thus ,, accounts for the short-
scale variation of the slow potential. Let us apply Gauss’ theorem to Vi/,, in a control
volume bounded by the surfaces z = —# and z=0 on the bottom and top, the
surfaces 87, and S, on the right and left, and the rest position of the body, with the

B 54 PPN

+J dx g, _"J da iy, =0. (A1)
-B z2=—D - z=—h
Now, the integrals along the free surface are

[J f ]lﬁmd'?:h(f f )U dx—hU +hU (A2)

after using (6.5). The integrals along the vertical walls of the body are

(J f)d¢= {J f}[ ¢+]d+(f J) e (A3)

Since i, satisfies Laplace’s equation we have

0
J’“ (X1 Yher t#) de = [—an Y. dz+ *:l

i
- _Xll w;klz(i_Bs 0)+* = —?lﬁrl wllz(iB’ 0)+*

=—hU(L B), (A 4)

where the dependence on ¢, has been suppressed for the sake of brevity. Use has been
made of the free-surface condition on ¥;; and (4.3). When (6.20) and (A 4) are

combined, we find:
+B

j Yooz dZ_J Vaor dz = AU
SE Sy -B

Because of (A 2) we get

+B -B +B +w
f Yooz dz—f Vo dz=hU| —hU| —hU| =-—-hU| , (A5)

sL S, +o — ] -

where U(+ o0) can be explicitly computed from (6.5):
ghU(— o0) = —{iwa* f(0) [ika fo(0)] +iwE*a* fi(0) | —ikR a f,(0)]} + *
— 20kjal* (1—|RP) £3(0 (A 6)
ghlU{w0) = —{iwa*T*f,(0 [IkanD N+ *}

= 2wk |al® T2 f2(0). (A7)

Since the body is freely floating as far as the high-frequency motion is concerned,
energy is conserved :

[RIZ+ (T2 = 1. (A 8)
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Combining (A 6)—(A 8) we get a very simple result:

U(+00) =U(—0o0) (A9)
which proves (6.22).

Appendix B. The slow radiation potential

In the near field within a few short wavelengths from the body, the rigid-lid
agsumption applies for the slow potential on the free surface. Let the ambient flow
velocity be ev, and the slow-sway displacement be of unit amplitude. The sway
velocity and acceleration are

Re[—2iQ e %9, Re[—4Q?2 ¢824, (B 1)

Let the near-field potential be
Yio = Re [y e7284], (B 2)

and the ambient current velocity be
v = Re[v e 34], (B 3)
¥ has the following outer approximation in the fixed coordinate system :

W > [et @ +2iQ)c] (kx> + 00), (B 4)
where ¢ is the blockage coefficient. In the far field, the radiated long-wave potential
may be written as 4B — Re[¢ e-2i20], B 5)
where ¢ =taectnl x50, (B 6)

a is an amplitude function and ghk? = (262)%. Use has been made of the fact that the
slow velocity field due to sway is even in «,, hence ¢ is odd in z,. Note that ¢{? is
a solution to the long-wave equation.

The inner expansion of ¢’ is

¢ —xa[l+ik, x|+ 0k, 2,)?]. x, SO. B7)
Matching the asymptotic expansions (B 4) and (B 7) immediately yields
gk, = v, (B 8)
a = (v +2i82)c, (B9)
from which we find
9 .
W = ?—_i;jﬁch : (B 10)

The amplitude of the potential ¢{ per unit amplitude of sway displacement is
therefore given by 5.0
—2iQc
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