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For a long cylinder floating on the sea surface, incident sea waves with a narrow 
frequency band excite body oscillations of short and long periods. Depending on the 
stiffness of the mooring system, the body displacement of the long-period motion can 
be comparable with, or even greater than that of the short-period oscillations. By 
combining the asymptotic methods of multiple scales and inner and outer expansions, 
we describe an essentially analytical theory for slow sway of both small and large 
amplitudes. Besides showing results for various quasi-steady and transient incident 
waves for a rectangular cylinder, we examine the effect of the gap between the keel 
of the body and the sea bottom. It is found in particular that a small gap can enhance 
moderate resonance by blocking the flow due to long waves and increase the 
apparent mass of the cylinder. Real-fluid effects are not included. 

1. Introduction 
Moored vessels and offshore platforms are often subject to seas with narrow- 

banded spectra. Since their mooring systems may have natural frequencies of 
horizontal plane motions (sway, surge, yaw) in the order of 0.01 Hz, these vessels can 
be excited by long-scale fluid motions associated with the modulational periods of 
incident wave groups. 

In  a regular (unmodulated) wave train, the steady drift force, which is second 
order in wave slope, can be computed from the first-order (linearized) solution. In  
irregular waves, Newman (1974) has found that the slow drift force can be written 
as a quadratic transfer function of the wave components. The coefficients of this 
function can be expanded as functions of the difference frequencies. He suggests that 
for small frequency differences the coefficients can be approximated by their values 
a t  zero difference - thus the slowly varying drift force is almost as simple as the 
steady drift force. In many other papers, the slow motion is found as a part of the 
complete and complicated second-order theory, see Pinkster (1976) or Ogilvie (1983) 
for a survey. Triantafyllou (1982) has observed that for finite depth the slow 
potential is of first order, and used a multiple time expansion to study large- 
amplitude (O(1)) slow motion. This technique was also employed by Molin & Bureau 
(1980). In  these papers, the computational task is considerable. Reasoning that slow 
motions are associated with long waves, Agnon & Mei (1985) employed multiple 
scales in both time and space to study a rectangular block in beam seas, and 
examined second-order slow motions analytically. 
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In  this paper we extend our earlier analysis to a two-dimensional floating body in 
beam seas. I n  $ 2  the problem is formulated. Boundary conditions on the body are 
given in 93. In $$4-7, small slow sway is described: fast motion is in 94 and slow 
motion in 995 and 6, and examples for a narrow-gap geometry are given in $ 7 .  
Sections 8-10 describe large slow sway : fast motion is studied in 98, slow motion in 
$9 and examples are given in $ 10. By combining the methods of multiple scales and 
matched asymptoties, analytical results are given for the transient evolution of slow 
drift motion and the radiation of long waves. Although the present theory is 
explained only for a rectangular cylinder allowed to sway, extensions to arbitrary 
cross-section and to three degrees of freedom require only known techniques of 
computation for the linearized part and involve no new principle. Results of such 
computations are presented. 

2. Formulation 

the velocity potential @(x, z ,  t )  
Under the usual assumptions of potential theory, the Laplace equation holds for 

A@ = 0 in the fluid, (2.1) 

where (x, z )  are Cartesian coordinates, with the positive x-axis pointing vertically 
upwards, and t denoting time. Using g for gravitational acceleration, P for pressure 
and p for the fluid density, we have the Bernoulli equation: 

Assuming zero pressure on the free surface a t  x = 6 and small wave steepnL-7 w,, we 
expand the free-surface boundary condition for @ around the rest position of the free 
surface, and get 

At the rigid horizontal bottom, the kinematic boundary condition is: 

O z = O ,  z = - h .  (2.4) 

Throughout this paper, the water depth is assumed to be comparable with the 
wavelength : 

kh = O( 1). ( 2 . 5 )  

There are two small parameters associated with slowly varying small-amplitude 
waves. The first is the wave steepness ekA,  where k is the central wavenumber and 
€A is the free-surface amplitude of the short wave, where kA = O(1).  The second 
parameter is the modulation ratio e ' O / w ,  where F'O is the frequency of modulation 
of the short wave, or equivalently, its frequency bandwidth, with Q = O(w).  For 
simplicity, we shall choose E equal to 6'. so as to render effects of dispersion and 
nonlinearity comparable. 

In the near field of the body defined by kx = 0(1), evanescent modes are as 
important as the propagating modes ; together they satisfy the boundary condition 
on the body. The lengthscale is l / k  in all directions but there are two timescales, 
1/w and l/ws, the latter because of the slow modulation in the incident waves. It is 
well known that in an unobstructed sea, the envelope of propagating waves within 
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FIGURE 1. The near field of a two-dimensional problem. 

a narrow frequency band of O ( c w )  must be slowly varying in space with the 
lengthscale O ( l / c k ) .  We define the far field by (kxl = O(l/s)  where only the 
propagating modes of the short waves are expected to be relevant. In  the scheme of 
multiple-scale expansions, the neat field is described by the independent variables 
x, z ,  t ,  and the far field by x,  z ,  t ,  x, and t ,  where 

(XI, t l )  = e(x ,  4. (2.6) 

This division into near and far fields enables us to disregard the long wave in the 
former and the evanescent modes in the latter; thus the analysis can be simplified. 

3. Boundary conditions on the floating body 
To continue the description of our approach, it is sufficient to focus on a two- 

dimensional problem of a horizontal cylinder in beam seas. At static equilibrium the 
axis of the cylinder lies on the y-axis. Waves are incident from ( x - t  - co) (figure 1). 
For simplicity of presentation, we assume that the body has a rectangular cross- 
section and performs sway motion only, to the leading order, a t  both fast and slow 
timescales. Inclusion of all three modes of the fast motion involves no dificulty in 
principle and gives no qualitatively new feature in most cases. As will be reasoned 
shortly, sway is the most important of all slow modes of a cylinder. The mooring 
system is modelled by a linear spring. 

The wave field is coupled with the motion of the body through boundary 
conditions on the body surface. Denoting the sway displacement by X ,  the exact 
kinematic boundary condition is, before introducing multiple scales, 

COz = X ,  on 8' = { x  = X ( t ) + B ;  - D  < z < 8, (3.1) 

@ , = O  o n b = { z = - D ;  - B < x - X < B } .  (3.2) 

S' are the vertical sides of the body, which has breadth 2B and draught D (see figure 
1) .  B and D are assumed to be comparable with the depth h which is of the order of 
the wavelength 27c/k. We shall denote the boundaries of the body at  rest by 

S $ = { x = * B ;  - D < z < O } ,  b , = ( z = - D ;  - B < x < B )  

and the mean position by averaging with respect to the short-wave period by 

82 = { x  = f B + X , , ( t , ) ;  -D < z < O}; h, = { Z  = - D ;  --B < x-X,(t ,)  < B}. 
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The exact dynamic boundary condition on the body is, before introducing slow 
coordinates, 

(3.3) 

where M is the mass of the body and K is the elastic constant of the mooring system. 
The right-hand side is the hydrodynamic force, where the pressure P is given by (2.2). 
As is well known, the driving force for the slow motion (zeroth harmonic) is O(e2). 

Lct us denote the time average with respect to 2n/w by an overbar. The magnitude 
of depends on the mooring stiffness K .  If the mooring is moderately weak so that 
K = O ( e ) ,  must be O ( F )  (small displacement) in order that  the spring force should 
balance the hydrodynamic force. The mass of the body is M = O(1)t so that the 
inertia of the body for the slow motion is in general 

which is O(e3) and negligible. 
must be 0(1) 

in order that the mooring force balances the slow-drift force. The body inertia is then 
O ( 2 )  and is no longer negligible. 

Some remarks on the magnitudes of other components of the body displacement are 
warranted here. For the slow heave Z and roll 8, the dominant terms of the restoring 
force and moment are due to buoyancy, the inertia term being O(e3) .  For heave the 
buoyancy force is 

while the restoring moment for roll is 

On the other hand, if the mooring is very wcak so that K = O(e2) ,  

- 2BpgZ = O(Z) ,  (3.5) 

- yMm, B = O(B),  (3.6) 

where the metacentric height m, is assumed to be O(1).  Since the forcing for slow 
motion is O(e2)) ,  we find that the amplitudes of the slow heave and roll, too, are 
O(c2), and much smaller than the slow sway. An exception is a floating body with a 
bottle neck a t  the water plane such as a semi-submersible whose water-plane area is 
very small. Thus slow sway is usually the most important mode of drift motion. 

From now on i t  is convenient to  examine separately the near f ie ld ,  within a few 
short waves from the body, and the f a r f i e ld ,  a few wave groups away from the body 
on either side. 

We first describe in 334-7 the case where the drift motion is of small amplitude 
LY = O(c) .  Modifications for large amplitude k X  = O(1) is presented in §§S-lO. 

4. Slow drift of small displacement: fast motion 

We first consider a stiff mooring K = 
of order O(c), can be expanded into harmonics as follows: 

4.1. The near field 

= O ( F ) ,  so that the body sway X, which is 

t In physical parameters J!/ = 2pBD by Archimedes’ law. 
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Let us distinguish the potential @ in the near field by $. At the first order, first 
harmonic, the short-wave potential in the near field @ll satisfies (2.l), and 

@llz - ( T $ ~ ~  = 0 on z = 0,  

$ 11, = -iiOX,, onS$,  

(4.2) 

(4.3) 

$llz = 0 on b,, z = - h, (4.4) 

In  addition, @ll must satisfy the radiation condition. Formally, these equations are 
identical to the equations for the linear, time-harmonic problem of a rectangular 
cylinder swaying freely in regular waves. Many numerical methods can be used to 
solve this linear problem of diffraction and radiation. In  particular one can determine 
the reflection and transmission coefficients R and T associated with the propagating 
modes 

where 

7 

(eikr + R ePikx), - kx 9 1, 

k x 9  1, 

2/2 cosh k ( z  + h) 

(h + ( T - ~  sinh’ kh); ’ f o ( 4  = (4.7) 

with k being the positive real root of 

(4.8) 
0 2  

9 
(T = - = k tanhkh. 

The first-order displacement amplitudes A of the short incident wave is related to the 
potential amplitude a by 

Siwaf,(O) 

9 
A =  (4.9) 

As an interesting special case to be examined further later, we consider the gap 
between the bottom and the body to be narrow: 

h- D = O(eh). (4.10) 

In view of this assumption, flow in the gap is roughly uniform, forced by the pressure 

(4.11) 

When multiplied by the gap width, this flow gives rise to an O(e2) flux. Its effect is 
that of a pair of oscillating sink and source of strength O(e2)  and is negligible outside 
the gap. The potential outside the gap, pll, is then given to O(e) by the solution in 
Agnon & Mei (1985) for a sliding block, as if the gap did not exist. 

4.2. The farJield 

Away from the body (xl = O(1)) the short waves and long waves have been analysed 
by Agnon & Mei (i985). We only recall that, up to O(e2) ,  the far-field potential, which 
we denote by 4, is 

(4.12) q5 = e[q5,, + (q511 e P ’ +  *)] + e2[#20 + (q521 e-”Of + *) + ($22 e-2i‘ot + *)] + O(e3) .  
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At O ( E )  the short-wave potential consists of the propagating modes only, 

$11 =fo(z) [Q+(xl, tl) eikr+Q-(xl, t l )  e-ikx], (4.13) 

where (4.14) 

in order for Qzl t o  be solvable (see e.g. Mei 1983 p. 5 2 ) .  I n  order to match with the 
near field we require that 

(4.15) 
Q+ = a(t1 -x1/Cg) ; Q- = Ra(tl +xl/Cg) (xl < 0), 

(x1 > 0). Q+ = Ta(t1 -xl/Cg) ; Q- = 0 

5. Slow drift of small displacement: slow motion in the far field 
The long waves are associated with the zeroth harmonic of the potential $lo, and 

of the surface elevation. Owing to the stretched coordinates, this first-order slow 
potential gives rise to second-order free-surface displacement 

1 
€Ql0 = -9 &2@j10t, = €2CZO.  

l a  --- 
g at 

I n  the far field, xl = O ( l ) t ,  the governing equation for $lo has been derived by Agnon 
& Mei (1985). From their (4.7) we can infer that 

$ lOt , t ,  -Sh$loxlx, = f W )  [c2-k2-2WCg1 [I&+12 + I&+121t,. (5 .2)  

In  view of (4.15), (5.2) becomes 

-{ IWl -x1/Cg)I2 + IRf-44 + x1/C,)l2h 2 1  < 0, 

-IW, -x1/Cg)I2, x1 > 0. 

(5.3) (" at, 

$ l O t , t ,  -gh$lo",x, 

= -fi(O) [ (k2-c72)Gg+2wk] 

The right-hand side of (5.3) forces group-locked long waves which propagate a t  
velocities G, and -Cg ; these are the inhomogeneous solutions to (5.3) without regard 
to boundary conditions. I n  addition, there are also free waves which propagate away 
from the origin a t  velocities (gh); and - (gh);, and are solutions to the corresponding 
homogeneous equation. Formally, the entire solution can be written as 

which must later be matched to the near field. The potentials of group-locked waves 
#&) (a = I,  R, or T) can be straight forwardly obtained from (5.3) and written as 

The free waves $:o are yet to  be determined. 

Unless otherwise specified, all spatial coordinates are normalized by k-' and time by u-', when 
orders of magnitudes are mentioned. 
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For later matching with the near field, we shall need the inner expansion of (5 .5)  
as lx , l+O;  

where we have replaced x, derivatives by t, derivatives. 

matching for small- and large-amplitude slow motions separately. 
We now consider the slow motion in the near field and carry out the procedures of 

6. Slow drift of small-displacement: slow motion in the near field and 
matching with the far field 

6.1. Large gap H = h-D = O(h) 

A geometry most common in practice is one in which the gap between the body and 
the bottom is not small compared with the water depth. 

I n  the near field the long-period potential is 

$ = E $ ~ ~ ( x ,  2 ,  t1)+E2+,,(X, z ,  t l ) + 0 ( E 3 ) ,  (6.1) 

up to O ( 2 ) .  While only $lo is of importance through to the dynamic pressure a t  
O ( 2 ) .  and hence to the drift force on the body, $20 is important to the kinematic 
condition on the body. Both $lo and $20 satisfy 

(6.2) $ joxx  + $jozt  = 0, 

with j = 1, 2. On the free surface z = 0, 1x1 > B, we have 

$ lo t  = 0, (6.4) 

(6.5) 

It can be shown that the velocity U ,  defined by the parenthesis on the right, 
approaches the Stokes’ drift U (  & 00, t l )  a t  infinity, and its 2-derivative vanishes. 

Expanding the kinematic boundary condition (3.1) about the mean position S$ , 
we get 

At the first order 0 ( c )  we get the zeroth harmonic: 

1 at7 
iqbl1 $TlX + *)z = h - . $ =- - (  

g ax 202 

x’, = $JS*)  = ~ x ( x ~ ) + s ~ x x ( s , i ) + 0 ( ~ 3 ) .  (6.6) 

$lox = 0 onS$, 

while a t  the second order, the zeroth harmonic is 

$2oz = & O t ,  - (x’ll $TlXZ + *) on S$. 
In  view of (6.2)-(6.5), $lo is a function only oft , :  
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Physically this result is expected on the ground of mass conservation. since the flux 
through the gap. which is O(Hqkl,,x), must be matched to  the flux in the far field, 
i .c. 

lim H-e$,, = lim he2$10x, = O(ez ) .  (6.10) 
I k X ,  < 11 

This in turn implies that  the spatial variation of the slow potential in the near field 
with respect to  the short scale is in general second order in c .  At the first order there 
is only a slow and uniform rise of pressure but  no flow. 

To find the second-order dynamic boundary condition from (3.3), we divide 
AS' into t w o  intervals ( - h .  0) and (0. c,,). Taking account of the following 
approxiniations 

d 
lkil* 1 dx 

d 2 - dtz €XI, = e"l",l,, = O(e3).  

f i t (s*) = $,(s$)+$.,,x+o(e3), 

[$,dZ = <$,(z = 0)+O(e3) ,  

thc  second-order. zeroth harmonic of (3.3) is found to  be 

where K = eK,. 

r;, = h u t ,  + Iv~,,12 + ( i 4 T l X  XI1 + *) +P (6.12) 

from the Bernoulli equation (2.2) and 

sc: = U (  --R, 0) -G(B, 0) (6.13) 

denotes thc jump from one side of the body to the other. 
LVith (6.12) incorporated. the right-hand side of (6.11) can be split into 

contributions by $lo and and Cl1 are formally the same as  their 
cwuntcqarts for a sinusoidal wave train, the terms involving them must give the 
usual steady drift force whivh has been obtained before by Maruo (1960). Ncwman 
(1967) and Longwt-Higgins (1977) (see Agnon 1986 for detailed verification). We 
only give thc rcsnlt here: 

Pg14z lWl2$  > (6.14) 

= w / k  and A is the amplitude of the free-surface displacement. Equation 

Since 

c 

where 
(6.11) can now he written as 

(6.15) 

In  vicw of (6.9). the two intcgrals above cancel, and the dynamic boundary condition 
reduces to 

(6.16) 

Thus our arguments via the multiple-scale expansions reaffirm Newman's result tha t  
the slow drift forcbc is approximated by the steady drift-force formula, for a large gap. 

C 
KlX,, = Pg1At2Iw$' 
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We point out  tha t ,  in the present case, body inertia and radiation damping are 
negligible at 0(c2) .  However, both of these are often included in existing literature in 
an ad hoc manner 

The present theory allows us, in addition. to  find the long-wave field, which has not 
been dealt with in the literature. To determine the wave potentials $:o and $yo we 
match the slow potential and its gradient on both sides of the near field with the 
corresponding quantities in the far field, yielding the simple result ' 

$ l O ( O - ,  4)  = $ l O ( t l )  = $lO(O+, 4). (6.17) 

Thus to the far-field observer, the near field shrinks to  a line at x1 = 0 across which 
the potential $lo is continuous via $lo Combination of (5.4) and (6.17) gives one 

(6.18) 

In  order to  determine the unknown $lo and $yo we need a further condition on 
a$lo/axl and a$;,,/dx1. This condition is related to  thc O ( 2 )  mean horizontal flux. 
Viewed in the near field, the second-order mean horizontal flux across a station 8:. 
where kx $ 1 and x1 < 1 ,  is 

This should be matched to  the far-field mean flux: 

(6.19) 

(6.20) 

The overbar stands for averaging over a short-wave period 2n/w and a short 
wavelength 2 n l k .  Because Cll and $11 are continuous when passing from the near to  
the far field, matching of flux implies 

(6.21) 

Extending the arguments in Agnon 8: Mei (1985) it is further shown in Appendix A 
that  energy conservation of the first-order wavcs, IR12 + ITI2 = 1 ,  requires also that 

(6 .22)  

where U (  f a, t l )  is just thc flux associated with the Stokes' drift. It then follows 
that  

- WlO1 = U (  * K J ,  t , ) .  (6.23) 
ax1 *,=o+ ax1 zl=u- 

Invoking again energy conservation of short waves we observe from (5.5) that  

$Fo+$& = $io at x1 = 0. (6.24) 

Matching the gradients of $lo as they appear in (5.6), and using (6.23) and (6.24), we 
eliminate the locked waves to get 

$;o(O-, 4 )  = -$:ow+. 4).  (6.25) 
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Using (6.24) and (6.25) we write the right-hand side of (6.18) in terms of & and the 
left-hand side in terms of 4;". The result is simply 

$:0(0+3 t l )  = &c0-. 4). (6.26) 

Thus the free long wave q5f0 is completely determined. I ts  potential amplitude is 
equal to the long wave locked to the reflected wave group but the speed is different. 
Substituting (6.25) and (6.26) into (6.17) and (6.18) we determine the near field to 
leading order : 

(6.27) 

Thus a t  x1 = 0 is the same as if the body were absent! This is similar to the 
Froude-Krylov approximation in t>he linearized theory of long waves past a small 
body. 

To recapitulate, we first calculate R and T by existing methods in the linearized 
theory of water-wave diffractZion. The steady drift displacement' is then given by 
(6.16), the locked long waves by (5.5) and the free long waves by (6.25) and (6.26). 
Thus our earlier theory €or a sliding block is extended. Sinoo the qualitative features 
of the results for the long waves are very similar to those for a sliding block already 
discussed in Agnon & Mei (1985), no numerical results for the former are presented 
here. 

6.2. Narrow gap H = h,- U < h 

When a ship is moored in very shallow wat'er, the gap bet'ween the body and the 
seabed can be narrow; the analysis of $6.1 does not apply. Consider specifically 

H h - D  = O ( E ~ ) .  (6.28) 

We first show for a vessel with a beam B / h  = O(1) that' the fast' heave and roll 
amplitudes 2 and 0 are hydrodynamically restricted to O(s2) and can be neglected. 
Let us denote the fast heave and roll potentials in the gap by $(') and $(@, and the 
related added mass and added moment of inertia by pz and I,, respectively. For 
brevity the subscripts ( )11 are omitt>ed here. The equations of mass conservation in 
the gap for each case are 

-H$$%)+(-iw)Z = 0, (6.29) 

Hence, by integrat'ion, 

The added mass for heave and the moment of inertia for roll arc then 

(6.33) 

(6.34) 

Since w = O(1), and the wave pressure is O ( e ) ,  the fast heave and roll displacements 
are O(E/C- ' )  = O(E'),  and too small to be interesting. 

Because of the narrow gap under the body, the scale of 2 is no longer h .  Previous 
conclusions on $lo no longer hold since strong blockage occurs. Thc> slow current 
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under the body becomes large ( O ( e ) )  and there is a large pressure gradient or 
difference between the two sides of t'he body. Apart from this difference, the flow in 
the gap has only an 0(e2)-effect on mass flux, which does not. play a significant role 
in $lo outside the gap on either side of the body. 

We now introduce e$io and e2$io so that 

@;o +e2$C;o = €$lo +c2$*o (6.35) 

with +hio satisfying (6.5), and 

$kOz = - (Xl1 $&,, + *) + U (  k 00, t l )  

on the sidewalls. In view of the vanishing of aU/ax at  x+ 00 we must have 

on S$ (6.36) 

$b.;o-o, IxI+co. (6.37) 

It follows from (6.6), or (6.7) and (6.8), that  

$ioz = SlotI - t7( f co, t l )  on 8;. (6.38) 

Obherwise $io satisfies the same conditions as $lo, and $Lo as $20, i.e. (6.8)-(6.4). 
$io now contains both first- and second-order effects. Clearly e2$io. corresponds to a 
radiat>ion problem which will give rise to O(e3)  long-period pressure only. 

Note that) e$b;,, corresponds to the flow in a channel with a rigid top and bottom, 
induced by a block moving longitudinally a t  the velocity e 2 ( X l o t , - / 7 ) .  This is a 
t>ypical problem in the linearized theory of long-wave scattering by a body. Since the 
long wave gives rise to an ambient current, e2v, t,he velocity of the current relat'ive t,o 
the body is e2(z~-Slot , -U) .  It is known (Flagg & Newman 1971) for aJixed body in 
long waves that the outer approximation of the near-field potential is given by 

E & ( t l ) + € ~ ( V - - 9 1 0 , 1 + C ~ ) x f € ~ ( 1 ~ - ~ ~ l o , l + ~ 7 ) c ,  x++ 00, (6.39) 

where c is t>he blockage coefficient defined here to have the dimension of length. The 
quantities Q and 1' must be determined by matching with the far field. Since the 
body is moving in the stationary frame of reference, we superimpose a countercurrent 
e2(Sl0, ,  - IT) and get 

S$io - € Q ( t l ) + s ~ r ~ x + € ~ ( ~ ~ - S l o t , + c 7 ) c ,  x +  f 00. (6.40) 

For a narrow gap the blockage coefficient' c is known to be a large quantity 

Bh 
H 

c. = - + 0 (loge) = O(e-1) (6.41) 

(Flagg & Newman 1971). Hence the variation of $io across the body is O(1). This 
implies that the slow potential must contribute a net force on the body according to 
(6.15), unlike the usual cases of H / h  = O(1).  

We now match the outer expansion of the near field, (6.40). to the inner expansion 
of the far ficld, (5.6), giving 

I a t l )  + [t~-xlot, + ~ 7 1  ec = r $ ~  + ~:Ois,=O~ 
&PI)  - [ r3  - S l o t ,  + t71 ec! = [ $ i O  +$To + $:O1zl=O~ 

(6.43) 
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Integrating the last two equatioris abovc with respect to  t,, we get 

$To = -$yo, XI = 0. (6.43) 

lJsing I : (  + CC. t l )  = U (  - co, t,) and eliminating Q, we find thcl potenbial jump across 
the  body, 

[ A " l s , = o +  - ~ + l ~ l l s l = = o L  = 98 + $&I - ($:" + & + $Yo) 

= 3c, ([ -4 &I -SlOt1 + v}, (6.44) 
c g  ( g h ) i  t ,  

wherc c, = a- = O(1). This is also the slow-potential difference [3&]s,-[$;0]s; 

bct>wt.cn t>he two outer limits of the near fields, i.e. between LS:, and S;,. Because the 
gap is small, the slow potential is different from +io at, 82, only in the O(c)  
ncighbourhood of t,hc gap cnt>ranc:e bcncat,h S$.  Hcnce to  leading order (6.44) gives 
the net) longperiod prcssure on t 'ht body. Equat,ion (6.15) becomes 

c 
h', s,, = Phl$:o+ +To - (+ki + $% + ~ , ) l t l  + pgI--1I2 lH12$ I XI = 0. (6.45) 

Because t>hc gap is narrow. t>he refledion coefficient H is the same a,s that  for a sliding 
block (rf. end of 94.1) comput>ed in Agnon & Mei (1985). 

W t  sha,ll now eliminntc $& bctwccn (6.43) and (6.44). From (6.24), (6.43) and 
(6.45) we get, 

(6.46) 

Uifferrrit~iat~ing (6.44) wit>h respect t o  t, we can subst'itute its left-hand side into the 
right-hand side of (6.45). Using (6.46) for $:ot,, we get finally 

c 
+2$&,, -9 I d 2  IX12R. 

+ q t  K Y  
Ph h c - l o t ,  

(6.48) 
2c ,q 9 - 1  
C! where 

is the well-known factor appearing in the radiation stress. Details are given in Agnon 
(19136). Equation (6.47) is similar t o  that  for a damped oscillator (note that  the 
blockage coc#icient r plays thc role of an  effcwtive mass). Once it is solved for certain 
initial conditions, we get from (6.46) $;,( &0% f l ) ,  which then gives $&(tlT (gh) ix , ) .  
Through the Bernoulli equation, the free-surface elevation associated with the free 
long waves is readily obtained from 

In the limit as H --f 0, thcre is no gap and the blockage coefficient c1 - co ; the last 
term on each side of (6.47) vanishes and the resulting equation mag be integrated 
with respect to  f , ,  yielding 
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which is identical to the equation for a sliding block (Agnon &. Mci 1985). On the 
other hand, as the gap becomes large, H = 0(1), c1 = O(e) and the last term on each 
side of (6.47) becomes the dominant term, and (6.16) is recovered. Therefore, (6.47) 
may be regarded as practically valid for all gap widths although it is established for 
a narrow gap only ! 

Note from (6.47) that the normalized response is independent of the valuc of e. 

7. Slow drift of small displacement : Examples for special incident 
envelopes for the narrow-gap case 

We shall now give explicit solutions to (6.47) for the following wave envelopes : ( a )  
a steady sinusoidal envelope ; ( b )  the sudden start of a sinusoidal envelope : (c) the 
gradual start of a sinusoidal wave: and ( d )  a wave packet. 

( a )  d quasi-stmdy sinusoidal entielope 

Let the incident wave have the scaled amplitude 

d = do sinat ,  at x1 = 0 for all t,,  (7.1) 

(7.2) 

so that the actual amplitude is do. The solution to (6.47) is simply 

XI, = Re [Xi, ePiSZtl +S;,]. 

The amplitude of the oscillatory component is 

with 

The steady-state component' is 

Let' 

( b )  Si idden start of a sirbusoidal entielop 

d = H(t l )d ,  sinat, ,  

(7.4) 

(7.6) 

where H is the Heaviside step function. The solution of the homogeneous part of 

(7.7) (6.47) arc y emi'i, e%ti, * 10 

with (7.8) 

I t  is assumed that the square root above does not vanish so that a,  $. a2. Otherwise 
the solutions are emit, and t ,  emltl; the results are not qualitatively more interesting. 

With the initial conditions X,,(O) = Xlotl(0) = 0 we get the transient sway. 

where Xio and S;, are defined in (7.3) and (7.5). 
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FIGURE 2 .  Normalized a_mplitudes of the slow-sway displacement Zi,, = h ) X J / A ;  for Case ( a ) ,  a 

sinusoidal envelope; K ,  = K / e p g h  = K,/pgh = 0.5, 1 and 2 ;  kh = 1.0; c , / h  = 1 (narrow gap). 

( c )  Gradual start of a uniform umie train 
Let the envelope begin from zero a t  t ,  = 0, grow sinusoidally to x/252, and then be 
kept uniform : 

A = A o  H(t , )H - - t l  sinQt,+H tl-- [ (G ) ( 233 (7.10) 

Then XI, is given by (7.9) for 0 ,< t ,  < x/252, and 

As t ,  I' co, S,, tends to SX-;,, which is the steady drift displacement, and is also the 
value given by (6.16). 

( d )  A wave packet 
Let the envelope have a finite duration from t, = 0 to  t ,  = x / Q :  

A = H ( t l ) H  - - t ,  A, sinQt,, (: 1 (7.12) 
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FIGURE 3. Transient slow displacement for a block with a narrow gap. Case ( b ) ,  a sinusoidal 
envelope starting from rest; Case ( e ) ,  uniform envelope starting from rest ; Case (d ) ,  a pulse envelope. 
CJh = 1 ; kh = 1 ; a / w  = 0.4: KJpgh = K/cpgh = 1. 

then X,,  is given by (7.9) for 0 6 t, 6 n/Q, and 

We now present numerical results in dimensionless parameters denoted by tildes 
In  all the computations presented in this section we chose kh = 1, rr? = M / p h 2  = 1 
and El = c l / h  = 1. The normalized mooring constant is gl = K,/pgh = K/(epgh). 

In  figure 2 ,  the normalized slow-sway amplitude 

- hlX;,l - ehl$;,l S' = - - - 

where a circumflex denotes physical quantities unscaled by e,  is plotted versus 
d = Q / w  = b l e w ,  the wave modulation ratio, for three values of I?,. The resonance 
peak occurs near 2Q/w = (K,/2phcl)~. Thus the narrower the gap, the greater the 
blockage and the sharper the resonance. 

To help gain some idea of the physical magnitude involved, we may take the 
following sample values: depth h = 10 m, vessel width 2B = 10 m, wavelength 
h = 63 m (or k = O.l/m) which corresponds to a wave period of 7.2 s. Correspond- 
ing to the dimensionless parameters of c, and I?, chosen, the gap width is 5e (thus 
H = 0.5 m if E is O.l), and the spring constant is lo4 N/m if = 1. Each unit of the 
abscissa ( Q / w )  corresponds to a 72s  period of the modulation envelope. If the 
incident wave amplitude is 3 m each unit of the ordinate glo stands for a slow-sway 
amplitude of - 1 rn. 

In  figure 3, the slow-drift displacement $,, caused by transient wave envelopes is 
shown according to (7.3), (7.11), and (7.13) versus the non-dimensional slow time, 
Qt,. For all inputs, the modulational frequency Q is chosen to be near the resonant 
peak with Q / w  = 0.4 (cf. figure 2 ) .  For Case ( b )  the oscillatory part of the drift 
motion is larger than the mean. For Case (c) there can be some initial overshoot, after 
which the final steady state is quickly reached. For a pulse envelope the negative 
overshoot is followed by quick attenuation. 

lo A ;  i; ' 

6 FLV 190 
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8. Slow sway of large amplitude: fast motion in the near and far fields 
In  many practical situations, where the mooring is very weak the slow-sway 

displacement can be much larger than the wave amplitude. It is no longer feasible to 
carry out the Taylor expansion about the rest position of the body : modifications are 
required. 

Specifically, we assume 
K = @K, = O ( 2 )  (8.1) 

and H = O(h) and the total displacement can be large 

Instead of (4.1) we let 
x = O(1). 

X = Z en Z X n m  e-imr*t, 
rn n 

n-0 m--n 

where the series begins a t  n = 0 and X o  = X,, is the slow-sway displacement of order 
unity, i.e. comparable with h or k- l .  The corresponding drift velocity is first 
order, 

- E X o t ,  = O ( e ) .  ax0 -- 
at 

We define a moving coordinate system that follows the slow motion So, in order to 
study the fast potential 1,9~~. Let 

(x’, x ’ ,  t ’ )  = ( x -x , ,  z ,  t )  

W ( d ,  x ’ ,  t ’ )  = @(x, 2, t ) .  

(8 .5)  

be the moving coordinates in terms of which the velocity potential is 

(8.6) 

The spatial gradient does not change under the transformation (4.12) so that  

O‘gz’ =r VQi, (8.7) 

but the time derivative changes in accordance with 

@p;. = gzt - L a o t 1  qx. (8.8) 

@’ = d/’ : J’ ,  z’ = I)( 1) (8.9) 

Let us denote the near-field potential by @’ 

and expand it into orders and harmonics as in (2.7) 
m n 

(8.10) 

The first-order fast potential satisfies formally (4.2)-(4.5) when all the unprimed 
variables are replaced by the primed variables, Therefore, the solution in the primed 
coordinates follows trivially from that in the unprimed coordinates, and can be 
regarded as known. 

9. Slow sway of large amplitude: slow motion in the near and far fields 
From (8.8), the slow-drift velocity affects the short-period pressure at  0(s2) but 

the long-period pressure a t  0(e3). It follows that the drift force on a body is still given 
by the conventional theory with the amplitude varying slowly in time. If desired, the 
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correction can in principle be computed in a manner similar to the theory of a ship 
cruising in waves (see e.g. Grue & Palm 1985 and Huijsmans & Hermans 1985). 
Nevertheless, the leading-order correction to the drift force must be proportional to  
the small ' current speed '. Without calculating the details we shall formally express 
the 'current effect ' on the drift force by 

pgx~21A12exot1 = 0 ( € 3 )  A', (9.1) 

with A' = O(1). 

approximated from (6.6) 
To the first order O(e), the slow kinematic boundary condition on the body can be 

= X O t ,  on S $ ,  x = fB+.Xo(tl), - D  < =. < 0. 19.2) 

The dynamic boundary condition on the body is obtained in the same way as (6.15) 
for the small-amplitude slow sway, except that the body inertia, which is now of 
order 2, must now be added. A consistent assumption for the mooring force is 
K = e2K2, i.e. very weak. We now have 

The slow potential $lo can be separated into two parts: the first, part $$,) is a 
function oft, only and is the near field of the slow potential given by (6.34)-(6.37). 
Its corresponding far field $5) consists of the locked long waves which travel with the 
short-wave groups (I, R and T) and of the free wave &. In  particular, $!:) 
satisfies 

$i'd, = 0 onS$. (9.4) 

Because of this homogeneous condition, $$ may be called the diffracted free 
wave. The remaining part of the slow potential, $I:), is related to the radiated wave, 
satisfying (9,2)1 the inhomogeneous condition and the radiation conditions that the 
long wavm are outgoing from the body. $$ is simply the solution to the linear 
problem for wave radiation by the slow-away motion. The determination of @$) and 
the corresponding i s  an exercise in matched asymptotics similar to Beck & Tuck 
(1972). For convenience, the essential results are cited in Appendix B. In particular 
we find the far fields to  be 

@!:) = kc Re{X',a exp[-ZiSa(t ,7 ,~~/(~ht)]}  x1 2 0, (9.5) 

where 
2iQc 

c i k l c - l '  
a = -  

and c is the same blockage coefficient as in (6.41), and L, = 3Sk/(gh)% = 0(1) is the 
normalized long wavenumber. It may be pointed out that matching ensures the 
continuity of pressure and mass flux. 

The associate drift force due to  I# is 

= e2p Re [ - 2iQXo e-2iRtl(2ha - 2iQ2BD)l. (9.7) 

The result has been derived by Beck & Tuck (1972, equation 5.8) who studied a 
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slender body in shallow water. We can define the added-mass and damping 
coefficients p and h by 

Y .  Agnon, H .  S .  Choi and C.  C. Mei 

-pi:) = (-4Q2p-2iQh)Soe-2i"'1 

i.e. 
4Qpekl hc2 

1 + (ekl ch c)' ] ' = [ l + ( e k , c ) 2 ]  

We may now rewrite (9.3) as 

(9.9) 

(9.10) 

Note from (9.10) that for a wide gap c/h = O(1) or H/h,  = O( 1 )  and ch = O(BD) ; the 
apparent mass p is of the same order as the actual body mass but' the radiation 
damping force associated with h is much smaller than the rest by the factor Ole).  This 
suggests the possibility of large resonance if IA 1, has the modulational frequency close 
to [K,/(M +p)]i. However, near resonance, where the body inertia and the elastic 
mooring force nearly cancel each other, real-fluid effects so far ignored are important 
and serve to make the resonance finite. To the leading order (9.10) is surprisingly 
simple in that one only needs the apparent maw ,u of the body for the long-period 
oscillations, the drift force being given by the standard formula as stipulated by 
Newman (1974). To account for this weak radiation damping consistently with the 
inviscid theory, it is necessary to go to O(e3)  and further to include the effect of the 
A' term. This is not very rewarding in view of the more important effects of viscosity 
and flow separation. There is however a special circumstance where radiation 
damping can be more important than the A' term. Referring to (6.41), the blockage 
coefficient depends on the ratio B/H,  which can be large. Consider c /h ,  = O( l/e;), then 
p = O(l /&)  and h = ei. Let the damping be moderately weak so that K = ($K$ or 
K ,  = K;/&. Then the balance of response to forcing in (9.10) implies that X, = O(&. 
In this case the radiation damping term is still small: AXot,  = O(e). However the 
drift force induced by the A' term should reduce with Slot, and be O(ef),  and is still 
relatively unimportant. 

10. Examples for special incident envelopes for large slow sway 
For the cases studied in 5 7 the analytical results in 3 7 can be carried over directly 

to the present case, with X,, replaced by So.  The only modifications are that Xi, 
defined by (7.3) must be replaced by 

(10.1) 
1c 
2 C  

S; = -- A p g  IRI2 A:[ - ( M  + p )  452' - 2iQh +K2]- ' ,  

and a1,2 of (7.8) are now given by 

(10.2) 

In  general a long floating cylinder has three degrees of freedom, and it is routine 
to solve numerically the linearized diffraction and radiation problem for allowing 
all three modes of motion. We have therefore calculated the reflection and 
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FIGURE 4. Amplitudes of the normalized slow sway LtA = hX,/A: versus the modulation ratio 

Q / w ,  for K ,  = K,/pgh = K/2pgh = 0.5, 1 and 2 ;  c / h  = 1 ; kh = 1.6; E = 0.1. 

FIGURE 5 .  Transient slow sway of large amplitude for a floating rectangular cylinder. Case ( b ) ,  a 
sinusoidal envelope starting from rest; Case ( c ) ,  a uniform envelope starting from rest; Case (d ) ,  a 
pulse envelope r?, = hS,/,4$ The parameters are O/w = 0.33; R, = K , / p g h  = 1 ;  c / h  = 1; 
kh = 1.6; E = 0.1. 

transmission coefficients R and T by allowing all three modes, which are 
unconstrained by the weak mooring force. Specifically we have carried our calcu- 
lations for kh = 1.6 and a square cylinder with sides 2B and draught D = B, in water 
of depth h = 2B. The density of the cylinder is homogeneous and is equal to half the 
water density. After finding the metacentre (at z = iB) and the moments of inertia, 
we have computed the reflection coefficient to  be IR'I = 0.7447, which includes the 
effects of diffraction and radiation. The added mass in long waves can be found to 
be ,u = 1.5ph2 (Flagg & Ncwman, 1971). Sedov's formula (Beck & Tuck, 1973) 
, ~ i  = 3p(hc-BD) then implies a blockage coefficient c/h = 1. The slow sway of large 
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amplitude is affected by the three first-order modes only indirectly through R and T ,  
the slow heave and roll being O(e)  smaller by comparison, as pointed out near the end 
of $3.  

In figure 1 the value of the normalized slow-sway amplitude for a periodic 
envelope, z h.X,JAi = e2h,f-,/A^& is plotted versus thc modulation ratio Q / w  for 
various choices of the parameters. A’ is omitted in these calculations. It is clear from 
(9.9) and (9.10) that  increasing c as well as increasing K ,  will reduce X,. Because of 
the weak radiation damping the resonant peaks are sharp. The very high peak for 

= 0.5 is of qualitative value only, as flow separation and other higher order effects 
must be important. In  figure 5 transient responses corresponding to the transient 
inputs of Cases ( b d )  of $ 7  are plotted. The long timescale of the transient part is 
chosen so that the corresponding frequency is not too far from the resonant peak 
shown in figure 4 for g2 = 1.  Again, due to weak radiation damping, there is a long 
period of reverberation at  the natural frequency, after the transient part of the input 
has gone. 

To see these results in physical scales we take a sample cylinder in water of 
h = 10 m depth. For e = 0.1, the corresponding unit slow sway in the graph is 
approximately 10 m if the incident wave amplitude is 3 m. 

1 1. Conclusions 
By a multiple-scale analysis we have been able to separate the low-frequency part 

of the second-order fluid motion from the high-frequency part. With further use of 
matched asymptotics, we have shown for a rectangular cylinder that (i) the transient 
slow-drift problem can be solved analytically without solving explicitly for any 
second-order potential, and (ii) the slow motion in the near field is accompanied by 
the propagation of long waves in the far field. 

We have also examined the effect of the blockage coefficient, which is a measure 
of the obstruction by the body to  long waves, and the effect of mooring stiffness. 
Specifically when the mooring is not too weak, the slow sway is comparable in 
magnitude with fast sway. If, furthermore, the blockage is not large, then the drift 
response is passive as predicted by Newman (1974). The local slow potential is hardly 
afkcted by the presence of the relatively small body. However, if the blockage 
coefficient is large, added-mass and damping coefficients of the slow motion become 
significant. The differential equation of slow motion becomes second order and 
moderate resonance may occur. The slowly varying potential, ignored by most 
previous authors, is shown to play an important role here. The response to  a transient 
input may exhibit considerable overshooting which should be relevant to a long 
vessel in a shallow harbour. 

We have also extended the analysis of Triantafyllou (1982) for the case of very 
weak mooring and clarified the conditions under which the slow sway can become 
O(1). Within the realm of the potential theory, damping due to the radiation of long 
waves and the change of drift forces due to the ‘forward speed’ effect of the slow 
sway on the short waves are both small, and strong resonance can occur. Damping 
due to real-fluid effects is of course important but much too difficult to be predicted 
theoretically . 

We are grateful for the financial support by the Office of US Naval Research 
(Contracts NO0014 80-(30531 and 86-K-0131) and the US National Science Founda- 
tion (Grant MEA 8210649). 
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Appendix A. Integrals concerning i3@20/i3x at S+, and S; 
We recall that $20 satisfies (6.2)-(6.5) and (6.8), thus $20 accounts for the short- 

scale variation of the slow potential. Let us apply Gauss’ theorem to V$zo in a control 
volume bounded by the surfaces z = - h  and z = O  on the bottom and top, the 
surfaces S+, and X i  on the right and left, and the rest position of the body, with the 
result 

Now, the integrals along the free surface are 

[p --OO +J‘;j$zo&= B h ( r B + r ) u * d x =  -CC B hUl-B+h(.lm -a2 B (A 2 )  

after using (6.5). The integrals along the vertical walls of the body are 

Since $11 satisfies Laplace’s equation we have 

J -D L J -D J 
iw 

9 
= -x,, $.T,,( ,B, O ) +  * = -- $.Tl$llJ +B> 0) + * 

= -hU( +B),  (A 4) 
where the dependence on t, has been suppressed for the sake of brevity. Use has been 
made of the free-surface condition on and (4.3). When (6.20) and ( A 4 )  are 
combined, we find : 

f B  

s,,$20z dz-J $201 dz = hU 1-B . 

s,, $zozdz-J s, $20, d z  = h L ~ l : ~ - h U - B  --a, --hUlYI = -hUl --a, , 

s; 

Because of (A 2) we get 

+-a, 

(A 5 )  

where U (  GO)  can be explicitly computed from (6.5): 

ghU( - co) = -(iwa*fo(0) [ikafO(0)] + iwR*a*fO(0) [ - ikR afo(0)]}  + * 
= 2wk(a(2 (1  - [Rl”)f;(o) 

= 2ok la12 ITl”;(o). 

ghU( GO) = - {iwa* T*fo(0) [ika Tfo(0)] + *) 

Since the body is freely floating as far as the high-frequency motion is concerned, 
energy is conserved : 

(Ry+(T/2 = 1. 
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Combining (A 6)-(A 8) we get a very simple result : 
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U (  + co) = t 7 (  - co) 

which proves (6.22). 

Appendix B. The slow radiation potential 
In the near field within a few short wavelengths from the body, the rigid-lid 

assumption applies for the slow potential on the free surface. Let the ambient flow 
velocity be cv, and the slow-sway displacement be of unit amplitude. The sway 
velocity and acceleration are 

Re [ - 2iQ e-2iQfl], Re [ - 4Q2 e-2iQt1]. (B 1) 

and the ambient current velocity be 

v = Re [21’ e-PiQt~]. (B 3) 

(B 4) 

1, (B 5 )  

XI 5 0, (B 6) 

$’ has the following outer approximation in the fixed coordinate system : 

$r’ + [dx k (a’+ 2iQ) c ]  (kx + k co ), 
where c is the blockage coefficient. I n  the far field, the radiated long-wave potential 
may be written as $$:) = Re [$’ e-2iQti 

where $’ = +a eiti1%1, 

a is an amplitude function and ghki = (2~2)’.  LJsc has been made of the fact that  the 
slow velocity field due to sway is even in x,, hence $‘ is odd in xI. Note that $$) is 
a solution to the long-wave equation. 

The inner expansion of $‘ is 

4’ + fa[ 1 + ik, ( x I (  + O(k ,  x,)’], x1 5 0. (B 7) 

(B 8) 

Matching the asymptotic expansions (B 4) and (B 7)  immediately yields 

eik, a = v’, 

a = (23’ +%a) c, 
from which we find 

The amplitude of the potential $r::) per unit amplitude of sway displacement is 
therefore given by 

- 2iQc 
a =  sik,c-l. (B 11) 
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